热力学与统计物理杂记
本文最后更新于 2025年9月19日 星期五 10:48
热力学基础
- 体胀系数:\(\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_p\),理想气体 \(\alpha=\frac{1}{T}\)
- 压强系数:\(\beta=\frac{1}{p}\left(\frac{\partial p}{\partial T}\right)_V\),理想气体 \(\beta=\frac{1}{T}\)
- 等温压缩系数:\(\kappa_T=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_T\),理想气体 \(\kappa_T=\frac{1}{p}\)
- 绝热压缩系数:\(\kappa_S=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_S\)
- \(\frac{\kappa_S}{\kappa_T}=\frac{C_V}{C_p}\)
- 热一:\(\mathrm{d}U=\delta Q+\delta W=T\mathrm{d}S-p\mathrm{d}V\)
- 热二:\(\mathrm{d}S\geq\frac{\delta Q}{T}\),\(\mathrm{d}U\leq T\mathrm{d}S+\delta W\)
| 内能 | \(U=Q+W\) | \(\mathrm{d}U=T\mathrm{d}S-p\mathrm{d}V\) |
| 焓 | \(H=U+pV\) | \(\mathrm{d}H=T\mathrm{d}S+V\mathrm{d}p\) |
| Helmholtz 自由能 | \(F=U-TS\) | \(\mathrm{d}F=-S\mathrm{d}T-p\mathrm{d}V\) |
| Gibbs 自由能 | \(G=U+pV-TS\) | \(\mathrm{d}G=-S\mathrm{d}T+V\mathrm{d}p\) |
- \(-W\leq F_A-F_B\),\(G_A-G_B\leq0\)
- 理想气体:\(S=C_V\ln T+nR\ln V+S_0=C_p\ln T-nR\ln p+S_0\)
- Maxwell 关系:
\[ \begin{align} &\left(\frac{\partial T}{\partial V}\right)_S=-\left(\frac{\partial p}{\partial S}\right)_V, \quad &\left(\frac{\partial T}{\partial p}\right)_S=\left(\frac{\partial V}{\partial S}\right)_p \\ &\left(\frac{\partial S}{\partial V}\right)_T=\left(\frac{\partial p}{\partial T}\right)_V, \quad &\left(\frac{\partial S}{\partial p}\right)_T=-\left(\frac{\partial V}{\partial T}\right)_p \end{align} \]
- \(\ln V=\int(\alpha\mathrm{d}T-\kappa_T\mathrm{d}p)\),\(\ln p=\int(\beta\mathrm{d}T-\kappa_S\mathrm{d}V)\)
- 定容热容:\(C_V=\left(\frac{\partial U}{\partial T}\right)_V=T\left(\frac{\partial S}{\partial T}\right)_V\)
- 定压热容:\(C_p=\left(\frac{\partial H}{\partial T}\right)_p=T\left(\frac{\partial S}{\partial T}\right)_p\)
- \(C_p-C_V=T\left(\frac{\partial p}{\partial T}\right)_V\left(\frac{\partial V}{\partial T}\right)_p=\frac{VT\alpha^2}{\kappa_T}=-T\frac{\left(\frac{\partial p}{\partial T}\right)_V^2}{\left(\frac{\partial p}{\partial V}\right)_T}\)
- Joule 第二定律:\(\left(\frac{\partial U}{\partial V}\right)_T=0\)
- \(\left(\frac{\partial U}{\partial V}\right)_T=T\left(\frac{\partial p}{\partial T}\right)_V-p\),\(\left(\frac{\partial H}{\partial p}\right)_T=V-T\left(\frac{\partial V}{\partial T}\right)_p\)
- Joule-Thomson 系数:\(\mu_{JT}=\left(\frac{\partial T}{\partial p}\right)_H=\frac{V}{C_p}\left(T\alpha-1\right)\)
- \(U=\int C_V\mathrm{d}T+\int\left[T\left(\frac{\partial p}{\partial T}\right)_V-p\right]\mathrm{d}V\)
- \(H=\int C_p\mathrm{d}T+\int\left[V-T\left(\frac{\partial V}{\partial T}\right)_p\right]\mathrm{d}p\)
- \(S=\int\frac{C_V}{T}\mathrm{d}T+\int\left(\frac{\partial p}{\partial T}\right)_V\mathrm{d}T=\int\frac{C_p}{T}\mathrm{d}T-\int\left(\frac{\partial V}{\partial T}\right)_p\mathrm{d}p\)
- 平衡稳定条件:\(C_V>0\),\(\left(\frac{\partial p}{\partial V}\right)_T<0\)
- 化学势:\(\mu=\left(\frac{\partial G}{\partial n}\right)_{T,p}=G_m(T,p)\)
- 巨热势:\(J=U-TS-\mu n=F-\mu n=F-G=-pV\)
近独立粒子的最概然分布
整个系统的微观运动状态,即系统内每一个粒子的力学状态。
经典系统的力学状态由每一个粒子的状态共同确定,量子系统的力学状态只涉及每一单粒子态上有几个全同粒子。
量子力学全同性原理:在含有多个全同粒子的系统中,交换任意两个全同粒子不改变系统的微观运动状态。
统计物理的两个基本假设:
- 宏观热力学系统由原子分子所组成,热力学量是相应微观物理量的统计平均值。
- 等概率原理(Boltzmann,1870s):处于热动平衡状态的孤立系统,各个可能的微观状态对统计平均的贡献是平权的。
热力学系统宏观物理量的取值只取决于粒子的分布,同一分布的不同微观状态具有相同的值。
态密度 \(D(\epsilon)\)
| 普通 | 相对论 | |
|---|---|---|
| 三维 | \(\displaystyle\frac{2\pi V}{h^3}\left(2m\right)^{3/2}\epsilon^{1/2}\) | \(\displaystyle\frac{4\pi V}{(ch)^3}\epsilon^2\) |
| 二维 | \(\displaystyle\frac{2\pi A}{h^2}m\) | |
| 一维 | \(\displaystyle\frac{2L}{h}\left(\frac{m}{2\epsilon}\right)^{1/2}\) |
三种分布
| M-B 分布 | B-E / F-D 分布 | |
|---|---|---|
| 配分函数 | \(\displaystyle Z_1=\sum_{i=1}^{\infty}g_i\mathrm{e}^{-\beta\epsilon_i}\) | \(\displaystyle\mathcal{Z}=\prod_{i=1}^{\infty}\left(1\mp \mathrm{e}^{-\alpha-\beta\epsilon_i}\right)^{\mp g_i}\) |
| 粒子数 | \(\displaystyle N=\mathrm{e}^{-\alpha}Z_1\) | \(\displaystyle N=-\frac{\partial\ln\mathcal{Z}}{\partial\alpha}\) |
| 内能 | \(\displaystyle U=-N\frac{\partial\ln Z_1}{\partial\beta}\) | \(\displaystyle U=-\frac{\partial\ln\mathcal{Z}}{\partial\beta}\) |
| 广义力 | \(\displaystyle Y=-\frac{N}{\beta}\frac{\partial\ln Z_1}{\partial y}\) | \(\displaystyle Y=-\frac{1}{\beta}\frac{\partial\ln\mathcal{Z}}{\partial y}\) |
| 熵 | \(\displaystyle S=k\left(N\ln Z_1+\beta U\right)-(k\ln N!)\) | \(\displaystyle S=k\left(\ln\mathcal{Z}+\alpha N+\beta U\right)\) |
| 自由能 | \(\displaystyle F=-NkT\ln Z_1+(kT\ln N!)\) | \(\displaystyle J=-kT\ln\mathcal{Z}\) |
经典极限条件(非简并条件):\(n_i\ll g_i\),\(N\ll Z\):
\[ \begin{align} \mathrm{e}^\alpha=\frac{V}{N}\left(\frac{2\pi mkT}{h^2}\right)^{3/2}\gg1, \quad n\lambda^3\ll1. \end{align} \]
- Maxwell-Boltzmann 分布,球坐标系:\(f(v)\mathrm{d}v=4\pi n\left(\frac{m}{2\pi kT}\right)^{3/2}\mathrm{e}^{-\frac{mv^2}{2kT}}v^2\mathrm{d}v\)
系综理论
正则系综:\(\rho_i=\frac{\mathrm{e}^{-\beta E_i}}{Z}\),\(Z=\sum_i\mathrm{e}^{-\beta E_i}\)
连续正则系综:\(\rho=\frac{1}{N!h^{rN}}\frac{\mathrm{e}^{-\beta E}}{Z}\),\(Z=\frac{1}{N!h^{rN}}\int \mathrm{e}^{-\beta E}\mathrm{d}^{rN}q\mathrm{d}^{rN}p\)
巨正则系综:\(\rho_{N,i}=\frac{\mathrm{e}^{-\alpha N-\beta E_i}}{\mathcal{Z}}\),\(\mathcal{Z}=\sum_{N,i}\mathrm{e}^{-\alpha N-\beta E_i}=\sum_N\mathrm{e}^{-\alpha N}Z_N\)
连续巨正则系综:\(\rho_N=\frac{1}{N!h^{rN}}\frac{\mathrm{e}^{-\alpha N-\beta E}}{\mathcal{Z}}\),\(\mathcal{Z}=\frac{1}{N!h^{rN}}\int \mathrm{e}^{-\alpha N-\beta E}\mathrm{d}^{rN}q\mathrm{d}^{rN}p\)